Skip to content

# Expressions and Substitutions

## Expressions and Substitutions

Symbolic math variables can be combined into symbolic math expressions. Once in an expression, symbolic math variables can be exchanged with substituion.

### Expressions

A symbolic math expression is a combination of symbolic math variables with numbers and mathematical operators (such as +,-,/ and *. The standard Python rules for calculating numbers apply in SymPy symbolic math expressions.

After the symbols x and y are created, a symbolic math expression using x and y can be created.

In :
from sympy import symbols
x, y = symbols('x y')
expr = 2*x + y


### Substitution

Use SymPy's .subs() method to insert a numerical value into a symbolic math expression. The first argument of the .subs() method is the variable and the second argument is the numerical value. In the expression above:

2x +y

If we substitute

x = 2

The resulting expression should be

$$2(2) + y$$ $$4 +y$$

In :
expr.subs(x, 2)


Out:
y + 4

The .subs() method does not replace variables in place, it only completes a one-time substitution. If expr is called after the .subs() method is applied, the original expr expression is returned.
In :
expr


Out:
2*x + y

To make the substitution permanent, a new expression object needs to be assigned to the output of the .subs() method.
In :
expr = 2*x + y
expr2 = expr.subs(x, 2)
expr2


Out:
y + 4

SymPy variables can also be substituted into SymPy expressions. In the code section below, the symbol $z$ is substituted for the symbol $x$ ($z$ replaces $x$).
In :
x, y, z = symbols('x y z')
expr = 2*x + y
expr2 = expr.subs(x, z)
expr2


Out:
y + 2*z

Expressions can also be substituted into other expressions. Consider the following:

2x + y

substitute in

y = 2x^2 + z^{-3}

results in

2x + 2x^2 + z^{-3}
In :
x, y, z = symbols('x y z')
expr = 2*x + y
expr2 = expr.subs(y, 2*x**2 + z**(-3))
expr2

Out:
2*x**2 + 2*x + z**(-3)

A practical example involving symbolic math variables, expressions and substitutions could include a large equation and several replacements.

n_0e^{-Q_v/RT}
n_0 = 3.48 \times 10^{-6}
Q_v = 12,700
R = 8.31

$$T = 1000 + 273$$

In :
from sympy import symbols, exp
n0, Qv, R, T = symbols('n0 Qv R T')
expr = n0exp(-Qv/(RT))


Multiply SymPy subs() methods can be chained together to substitute multiple variables in one line of code.
In :
expr.subs(n0, 3.48e-6).subs(Qv,12700).subs(R, 8031).subs(T, 1000+273)


Out:
3.48e-6*exp(-12700/10223463)

To evaluate an expression as a floating point number, use SymPy's .evalf() method.
In :
expr2 = expr.subs(n0, 3.48e-6).subs(Qv,12700).subs(R, 8031).subs(T, 1000+273)


In :
expr2.evalf()


Out:
3.47567968697765e-6