Expressions and Substitutions

Expressions and Substitutions

Symbolic math variables can be combined into symbolic math expressions. Once in an expression, symbolic math variables can be exchanged with substituion.

Expressions

A symbolic math expression is a combination of symbolic math variables with numbers and mathematical operators such as +, -, / and *. The standard Python rules for calculating numbers apply in SymPy symbolic math expressions.

After the symbols x and y are created, a symbolic math expression using x and y can be defined.

In :
from sympy import symbols

x, y = symbols('x y') expr = 2*x + y

Substitution

Use SymPy's .subs() method to insert a numerical value into a symbolic math expression. The first argument of the .subs() method is the mathematical symbol and the second argument is the numerical value. In the expression above:

2x +y

If we substitute

x = 2

The resulting expression should be

2(2) + y  4 + y

We can code this substitution above using the code below.

In :
expr.subs(x, 2)

Out:
$\displaystyle y + 4$

The .subs() method does not replace variables in place, .subs() only completes a one-time substitution. If expr is called after the .subs() method is applied, the original expr expression is returned.
In :
expr

Out:
$\displaystyle 2 x + y$

To make the substitution permanent, a new expression object needs to be assigned to the output of the .subs() method.
In :
expr = 2*x + y
expr2 = expr.subs(x, 2)
expr2

Out:
$\displaystyle y + 4$

SymPy variables can also be substituted into SymPy expressions. In the code section below, the symbol $z$ is substituted for the symbol $x$ ($z$ replaces $x$).
In :
x, y, z = symbols('x y z')
expr = 2*x + y
expr2 = expr.subs(x, z)
expr2

Out:
$\displaystyle y + 2 z$

Expressions can also be substituted into other expressions. Consider the following:

y + 2x^2 + z^{-3}

substitute in

y = 2x

results in

2x + 2x^2 + z^{-3}
In :
x, y, z = symbols('x y z')
expr = y + 2*x**2 + z**(-3)
expr2 = expr.subs(y, 2*x)
expr2
Out:
$\displaystyle 2 x^{2} + 2 x + \frac{1}{z^{3}}$

A practical example involving symbolic math variables, expressions and substitutions could include a large expression and several replacements.

n_0e^{-Q_v/RT}
n_0 = 3.48 \times 10^{-6}
Q_v = 12,700
R = 8.31
T = 1000 + 273

We can create four symbolic math variables and combine the variables into an expression with the code below.

In :
from sympy import symbols, exp
n0, Qv, R, T = symbols('n0 Qv R T')
expr = n0exp(-Qv/(RT))

Multiply SymPy subs() methods can be chained together to substitute multiple variables in one line of code.
In :
expr.subs(n0, 3.48e-6).subs(Qv,12700).subs(R, 8031).subs(T, 1000+273)

Out:
$\displaystyle \frac{3.48 \cdot 10^{-6}}{e^{\frac{12700}{10223463}}}$

To evaluate an expression as a floating point number, use SymPy's .evalf() method.
In :
expr2 = expr.subs(n0, 3.48e-6).subs(Qv,12700).subs(R, 8031).subs(T, 1000+273)

In :
expr2.evalf()

Out:
$\displaystyle 3.47567968697765 \cdot 10^{-6}$

You can control the number of digits the .evalf() method outputs by passing a number as an argument.
In :
expr2.evalf(4)

Out:
$\displaystyle 3.476 \cdot 10^{-6}$

Summary

The SymPy functions and methods used in this section are summarized in the table below.

SymPy function or method Description Example
symbols() create symbolic math variables x, y = symbols('x y')
.subs() substitute a value into a symbolic math expression expr.subs(x,2)
.evalf() evaluate a symbolic math expression as a floating point number expr.evalf()